SURE-LET IMAGE DENOISING WITH DIRECTIONAL LOTS
Shogo MURAMATSU, Dandan HAN, and Hisakazu KIKUCHI
Dept. of Electrical and Electronic Eng., Niigata University, Japan

ABSTRACT
It is proposed to adopt directional lapped orthogonal transforms (DirLOTs) in hierarchical wavelet structure to image denoising. So far, the orthonormal wavelet image denoising techniques have shown a disadvantage in the restoration of diagonal textures and edges because of the separability of the adopted transforms. This work shows through some experimental results that the SURE-LET approach with DirLOTs overcomes the geometric problem.

Key words– Directional transforms, Image denoising

Introduction
A common problem of image denoising, i.e. removal of additive white Gaussian noise (AWGN) from a given image is dealt with.

One of the most popular techniques is the orthonormal wavelet shrinkage with soft-thresholding [Donoho and Johnstone, 1994].

Luisier et al. proposed a linear optimization technique to determine the shape of shrinkage function [Luisier et al, 2007].

It is called the SURE-LET approach, which minimizes the Stein’s unbiased risk estimator (SURE) with linear expansion of thresholds (LET).

Main issue of orthonormal wavelet shrinkage for images is to improve the quality for diagonal edges and textures.

Let us introduce directional orthonormal discrete wavelet transforms.

Review of Orthonormal Wavelet Image Denoising

A wavelet denoising process is summarized as follows:

i) Perform a forward DWT of the noisy picture \(y = x + w \). Then, obtain the transform coefficients \(\Psi (y) = \Psi (x + w) = \Psi (x) + \Psi (w) \).

ii) Denoise wavelet subimages \(y_j \) for \(j \in [1, J−1] \). Then, obtain denoised subimages \(\hat{u}_j = \Psi (\hat{x}) \) as

\[
\hat{x} = \Psi^{-1} u = \Psi^{-1} \Psi (x) + \Psi^{-1} \Psi (w) = \hat{x} + \Psi^{-1} \Psi (w).
\]

iii) Perform the inverse DWT of coefficients \(\hat{u} \) as

\[
\hat{y} = \Psi^{-1} \hat{u}.
\]

Since \(\hat{x} = \Psi^{-1} (\Psi (x) + \Psi (w)) \), the denoising quality depends on the choice of the transform \(\Psi \) and the shrinkage function \(\Theta (\cdot) \).

SURE-LET for Shrinkage Function \(\Theta (\cdot) \)

The SURE-LET approach is efficient both in terms of computational complexity and denoising quality.

The shrinkage function is point-wisely defined and completely characterized by a set of parameters \(a_k \) and \(b_k \):

\[
\Theta (y) = \sum_{k=-K}^{K} a_k y_{k} e^{-\left(\frac{q_{k}}{2\beta}\right)^2} + \left(1 - \frac{q_{k}}{2\beta}\right) \sum_{k=-K}^{K} b_k y_{k} e^{-\left(\frac{q_{k}}{2\beta}\right)^2},
\]

where \(y \) and \(y_k \) are a wavelet coefficient and interscale prediction of \(y \) obtained from the wavelet parent-child relationship, respectively.

It is suggested to use \(K = 2 \) and \(\beta = \sqrt{6} \).

The parameters \(a_k \) and \(b_k \) are linearly solved for minimizing SURE.

DirLOTs for Transform \(\Psi \)

DirLOTs are 2-D non-separable lapped orthogonal transforms with directional characteristics [ICIP2009, ICIP2010].

The bases are symmetric, real-valued and have compact-support.

A Design Example of DirLOT

DirLOTs can be constructed under the trend vanishing moment (TVM) constraints, which force wavelet filters to annihilate trend surface components [PCS2010, APSIPA2010].

Experimental Results

Figure: Denoising results for an 8-bit grayscale picture of size 128 x 128 pixels. (a)Original picture, (b)Noisy picture with white Gaussian (\(\sigma = 30 \)), (c),(d) and (e) are denoised results, where Sym5, VM2 and TVM denote Symlets of index 5, DirLOT with the classical VM of order two and DirLOT with the two-order TVMs, respectively. The number of hierarchical levels is three.

Table: Comparison of PSNRs and SSIM indexes among three transforms.

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR</td>
<td>29.47</td>
<td>25.6</td>
<td>23.2</td>
<td>21.7</td>
<td>20.5</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.969</td>
<td>0.907</td>
<td>0.865</td>
<td>0.833</td>
<td>0.849</td>
</tr>
</tbody>
</table>

Figure: Denoising results for an 8-bit grayscale picture of size 128 x 128 pixels. (a)Original picture, (b)Noisy picture with white Gaussian (\(\sigma = 30 \)), (c),(d) and (e) are denoised results, where Sym5, VM2 and TVM denote Symlets of index 5, DirLOT with the classical VM of order two and DirLOT with the two-order TVMs, respectively. The number of hierarchical levels is three.

Table: Comparison of PSNRs and SSIM indexes among three transforms.

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR</td>
<td>24.04</td>
<td>25.70</td>
<td>27.51</td>
<td>29.62</td>
<td>31.88</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.847</td>
<td>0.571</td>
<td>0.559</td>
<td>0.533</td>
<td>0.500</td>
</tr>
</tbody>
</table>

Conclusions

- Proposed to adopt the hierarchical tree construction of DirLOTs to image denoising.
- Combination of SURE-LET approach and the hierarchical DirLOT overcomes the diagonal geometric problem.

Acknowledgment
This work was supported by JSPS KAKENHI (23560443).